STM32学习笔记----内存管理

2019-11-30来源: eefocus关键字:STM32  内存管理  内存申请

1。简介


内存管理: 指软件运行时对计算机内存资源的分配和使用的技术。其最主要的目的是如何高效,快速的分配,并且在适当的时候释放和回收内存资源。 内存管理的实现方法有很多种,最终都是要实现两个函数: malloc 和 free。

malloc :函数用于内存申请;

free: 函数用于内存释放。


1.1 分块式内存管理原理

在这里插入图片描述

由上图可知,分块式内存管理由内存池和内存管理表两部分组成。内存池被等分为 n块,对应的内存管理表,大小也为 n,内存管理表的每一个项对应内存池的一块内存。


内存管理表的项值代表的意义:当该项值为 0 的时候,代表对应的内存块未被占用;当该项值非零的时候,代表该项对应的内存块已经被占用,其数值则代表被连续占用的内存块数。


比如:某项值为 10,那么说明包括本项对应的内存块在内,总共分配了 10 个内存块给外部的某

个指针。内寸分配方向如图所示,是从顶—>底的分配方向。即首先从最末端开始找空内存。当内存管理刚初始化的时候,内存表全部清零,表示没有任何内存块被占用。


1.2 分配原理


当指针 p 调用 malloc 申请内存的时候,先判断 p 要分配的内存块数(m),然后从第 n 项开始,向下查找,直到找到 m 块连续的空内存块(即对应内存管理表项为 0),然后将这 m 个内存管理表项的值都设置为 m(标记被占用),最后,把最后的这个空内存块的地址返回指针 p,完成一次分配。


注:如果当内存不够的时候(找到最后也没找到连续的 m 块空闲内存),则返回 NULL 给 p,表示分配失败。


1.3 释放原理


当 p 申请的内存用完,需要释放的时候,调用 free 函数实现。 free 函数先判断 p 指向的内存地址所对应的内存块,然后找到对应的内存管理表项目,得到 p 所占用的内存块数目 m(内存管理表项目的值就是所分配内存块的数目),将这 m 个内存管理表项目的值都清零,标记释放,完成一次内存释放。


2。代码


1。 思想:将内存池分为块,首先定义每个块的字节数,和内存池的总字节数,用总字节数除以每个块的字节数得到块数

在这里插入图片描述

2. 内存池,实际上就是一个数组

在这里插入图片描述

3。 内存管理块,实际也是一个数组,总元素个数为内存块数,每个元素对应一个内存块,该元素非零时表示该内存块没有被占用

在这里插入图片描述

4。 将第一步中的信息用数组保存起来,方便后面的函数调用

在这里插入图片描述

5. 将内存抽象为一个结构体,传入的参数分别是,初始化函数,占用率函数,两个内存池(数组)的基地址,两个内存管理状态表(两个u16数组),两个内存池的就绪布尔值

在这里插入图片描述
在这里插入图片描述

6。 初始化函数,实际上就是将指定内存池(数组)内面的内容全部用0填充,将内存状态表(u16数组)全部用0填充,然后将该内存池的就绪布尔变量置一

在这里插入图片描述

7. 计算内存使用率,注意:得到的是块使用的比率,而不是字节使用的比率

在这里插入图片描述

8. 复制,就是按字节依次赋值内容

在这里插入图片描述

9. 从起始位置将连续count个字节的区域用c填充

在这里插入图片描述

10. 分配内存(内部调用),成功:返回相对于数组首地址的偏移地址。

  ->判断指定的内存池是否已经初始化

  ->若传入参数为0,表示不需要分配,直接返回

  ->通过所需字节数对每个块的字节数分别取整,取余得到所需的连续块数

  ->从最后一个块往前面寻找所需的连续块,例如所需的块为3,当找到连续2块而,下一块已经被使用时,则将已经找的的连续块数清零,再在前面找连续的3块

  ->返回的偏移地址为所需连续块的起始块相对于内存池的偏移地址

  ->将即将用到的内存块对应的内存管理表中的元素置为所需的连续块数

在这里插入图片描述

11. 分配内存,首先判断偏移地址是否正确,然后返回连续块的首地址

在这里插入图片描述

12. 扩大分配内存,首先分配一个指定的内存,再将旧内存里面的内容拷贝到新内存(这里感觉战舰的源码有问题,旧的内存里面原来没有size个元素,却拷贝size个元素到新的空间),

  最后释放旧的内存空间,返回新的内存(块)首地址

在这里插入图片描述

13. 清除连续的内存块,成功:返回0

  ->首先通过偏移地址除以每个块的字节数,得到起始块的序号

  ->读取起始块对应的内存控制表元素,得到从起始块开始共要清除多少个连续的块

  ->所谓的清除,实际上只是将对应的内存控制表的元素清零,内存中的值未清零。

  ->为某个对象分配元素时,是分配的连续块,清除时,也是清除这几个连续块,不同对象占用不同的连续块,清除时,不会影响其他对象。

在这里插入图片描述

14。 内存释放函数,首先得出偏移地址,然后,调用上一步的函数释放内存

在这里插入图片描述

(PS:2部分转自http://www。cnblogs。com/guozhikai/p/6031904。html)


3。字节对齐说明


3。1。什么是字节对齐,为什么要对齐?


现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。

对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问 一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那 么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数 据。显然在读取效率上下降很多。


3.2字节对齐对程序的影响:


设结构体如下定义:

struct A

{

int a;

char b;

short c;

};

struct B

{

char b;

int a;

short c;

};

现在已知32位机器上各种数据类型的长度如下:

char:1(有符号无符号同)

short:2(有符号无符号同)

int:4(有符号无符号同)

long:4(有符号无符号同)

float:4 double:8

那么上面两个结构大小如何呢?

结果是:

sizeof(strcut A)值为8

sizeof(struct B)的值却是12


3.3.编译器是按照什么样的原则进行对齐的?


先让我们看四个重要的基本概念:


1.数据类型自身的对齐值:


对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。


2.结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值。


3.指定对齐值:#pragma pack (value)时的指定对齐值value。


4.数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中小的那个值。


有 了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是 表示“对齐在N上”,也就是说该数据的"存放起始地址%N=0"。而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是数据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整倍,结合下面例子理解)。这样就不能理解上面的几个例子的值了。

例子分析:

分析例子B;

struct B

{

char b;

int a;

short c;

};

假设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,假设该值默认为4。第一个成员变量b的自身对齐值是1,比指定或者默认指定对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.第二个成员变量a,其自身对齐值为4,所以有效对齐值也为4, 所以只能存放在起始地址为0x0004到0x0007这四个连续的字节空间中,符合0x0004%4=0,且紧靠第一个变量。第三个变量c,自身对齐值为 2,所以有效对齐值也是2,可以存放在0x0008到0x0009这两个字节空间中,符合0x0008%2=0。所以从0x0000到0x0009存放的都是B内容。再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求, 0x0009到0x0000=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0x0000到0x000B 共有12个字节,sizeof(struct B)=12;其实如果就这一个就来说它已将满足字节对齐了, 因为它的起始地址是0,因此肯定是对齐的,之所以在后面补充2个字节,是因为编译器为了实现结构数组的存取效率,试想如果我们定义了一个结构B的数组,那 么第一个结构起始地址是0没有问题,但是第二个结构呢?按照数组的定义,数组中所有元素都是紧挨着的,如果我们不把结构的大小补充为4的整数倍,那么下一 个结构的起始地址将是0x0000A,这显然不能满足结构的地址对齐了,因此我们要把结构补充成有效对齐大小的整数倍.

同理,分析上面例子C:

#pragma pack (2) /指定按2字节对齐/

struct C

{

char b;

int a;

short c;

};

#pragma pack () /取消指定对齐,恢复缺省对齐/

第一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,

[1] [2]
关键字:STM32  内存管理  内存申请 编辑:什么鱼 引用地址:http://news.pyfle.com/mcu/ic481625.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:stm32局部变量过大,导致栈溢出
下一篇:STM32的堆栈(Heap&Stack)空间

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

STM8S存储器的读写操作
/************************************************************************************************************************************ Name    : STM8S存储器的读写操作* Author  : MingMing* Release : 2014/1/2* Update  : 2014/1/2* E-mail  : clint.wang@foxmail.com
发表于 2019-12-05
stm8l051 halt之后外部中断唤醒问题
最近用到stm8l051 halt,在halt之后开启了外部中断,有时灵,有时不灵,设置下降沿触发,但是按键(低有效)放开了才会从HALT退出,最后发现在进去外部中断的时候一直在外部中断里面不退出。在外部中断程序里面把端口的外部中断和端口使能的外部中断功能关闭,问题解决,可以在下降沿从halt退出。1、开启halt,其他代码省略,只贴halt部分:    /* 禁止TIM3 */    TIM3->SR1 = (uint8_t)(~(uint8_t)TIM3_IT_Update);    CLK_PeripheralClockConfig
发表于 2019-12-05
STM8L052低功耗模式
Stm8L系列单片机的低功耗有五种模式:§ wait模式§ Lowpower run模式§ Lowpower wait模式§ Active-haltwith full RTC模式§ Halt模式最低功耗的就是就是halt模式。这里也主要总结一下如何进入halt模式,进入以后可以通过什么方式唤醒,以及有很多客户会关心的如何自动唤醒。Halt模式进入很简单,执行一条halt指令,调用库函数也就是halt()就行了。但是进入前要注意把所有的中断挂起标志给清除掉。要是不清零又恰巧有中断标志的时候进入该模式也会被立马唤醒。进入这种模式,所有的外设全都关闭了,所有时钟关闭。这时候它自己是醒不过来的,只能靠掐人中(给个外部中断)或者重新复活
发表于 2019-12-05
解决STM8类型单片机空间太小,使用不了printf串口打印问题
概述:在使用STM8L101F3这款单片机时,由于它只有8K的flash,空间非常小,只要调用C库函数printf编译后整个文件很大,直接程序溢出。这也就意味着我们实现printf串口打印调试就没办法进行。既然使用不了库函数,那么我们就可以自己动手封装类似printf的函数,这样我们就可以实现数据串口打印啦。这里就直接放上我的STM8L101F3的部分源码了,希望可以给你一些参考。源码:#include "stdarg.h"#include "stm8l10x.h" void USART_Config(void){    /*Set the USART RX
发表于 2019-12-04
解决STM8类型单片机空间太小,使用不了printf串口打印问题
基于STM8的IIC协议--协议篇
4.3.8代码示例。3.6 数据有效性  I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许变化。3.7 I2C通信总过程 4. 例程4.1 编译环境:  我的编译环境是IAR,这款软件是现在STM8的主流平台,比较推荐。不过我打算等到STCubeMX更新出比较方便的版本后再去使用Keil5,因为我在用STM32的时候就是利用Keil5,的确很方便,你们也可以学着用一下。4.2 主芯片:  我的主芯片是STM8S系列中的103,其中STM8S的003、005、和103、105,配置一样(外设和CPU频率,FLASH),在代码相同的
发表于 2019-12-04
基于STM8的IIC协议--协议篇
基于STM8的ADC读取---STM8-第四章
和连续转换的扫描模式具有上限和下限门槛的模拟看门狗模拟看门狗时间发生可产生中断----------------------------------------------------------------------------------------------------------------------------------3. 例程3.1 编译环境  我的编译环境是IAR,这款软件是现在STM8的主流平台,比较推荐。不过我打算等到STCubeMX更新出比较方便的版本后再去使用Keil5,因为我在用STM32的时候就是利用Keil5,的确很方便,你们也可以学着用一下。3.2 主芯片  我的主芯片是STM8S系列中的103
发表于 2019-12-04
基于STM8的ADC读取---STM8-第四章
小广播
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD。com。cn, Inc。 All rights reserved
快乐飞艇彩票安全吗 北京赛车怎么玩 快乐飞艇 快乐赛车免费计划软件 快乐飞艇如何购买 快乐飞艇平台注册 上海11选5开奖 快乐飞艇怎么买 快乐飞艇用哪个计划 快乐飞艇彩票玩法