手把手教你在LabVIEW下使用OPC

2019-10-30来源: eefocus关键字:LabVIEW  OPC  PAC

  NI LabVIEW软件可以通过多种方式与可编程逻辑控制器(PLC)通信。用于过程控制的OLE(OPC)定义了在控制设备和人机界面(HMI)间实时对象 数据通信的标准。OPC服务器适用于几乎所有PLC和可编程自动化控制器(PAC)。在本教程中,您将学习如何在LabVIEW中使用OPC与联网的 PLC通信。


  目录

  本教程使用 LabVIEW数据记录与监控(DSC)模块。该模块包含了诸多工具,包拪将数据记录到联网历史数据库、实时与历史趋势、警报与事件管理、将 LabVIEW实时目标与OPC设备连在在一个完整的系统中、为用户界面提高安全性等等。由于拥有这些特性,LabVIEW成为了用于工业控制应用的强大 HMI/SCADA工具。


  要求

  • Windows XP/2000

  • LabVIEW FDS与LabVIEW DSC

  • NI OPC服务器

  使用NI OPC服务器查看现有的PLC标签

  1。 选择开始》程序》National Instruments》NI OPCServers》NI OPCServers,启动NI OPC服务器。使用NI OPC服务器,您可以创建、配置、查看与PLC关联的标签。

  2。 NI OPC服务器需要与已经载入的PLC仿真工程一起启动。这个工程仿真在NI OPC服务器中已经建立配置的PLC。

  说明:如果没有载入仿真工程,在NI OPC服务器中选择文件》打开,浏览C:Program FilesNational InstrumentsSharedNI OPC ServersProjectssimdemo.opf。工程如图1所示。

  图1:显示仿真PLC的NI OPC服务器


  展开Channel_0_User_Defined,选择Sine,查看正弦标签。标签在最右边的窗口中显示。这些标签被绑定到PLC的寄存器上,由LabVIEW读取。

  通过PLC OPC标签查看数据。

  1. 在NI OPC服务器中,选择Tools»Launch OPC Quick Client。这样可以启动OPC快速客户端,您可以用来查看OPC标签数据。

  2. 展开National Instruments.NIOPCServers文件夹,选择Channel_0_User_Defined.Sine。这样可以选定需要监视的设备。

  3. 请注意所有的正弦标签都列出在右边的窗口中,且如图2所示正在更新显示仿真正弦数据。

  图2:NI OPC快速客户端显示仿真正弦OPC标签


  说明:要获取NI OPC支持的设备/驱动程序列表,请访问ni.com/opc。

  通过创建I/O服务器将LabVIEW连接到OPC标签

  在本小节中,将创建OPC标签的LabVIEW接口,称为I/O服务器。I/O服务器以您指定的速率,用当前标签数值更新LabVIEW。


  1。 在LabVIEW的使用入门窗口中,点击文件》新建项目。这将打开新建LabVIEW项目。

  2. 如果即时帮助窗口不可见,按Ctrl+H键显示窗口。保持窗口打开,可以得到鼠标指针所指向对象的帮助信息。


  3. 在LabVIEW项目浏览器窗口中,右键点击我的电脑,选择新建》I/O服务器,如图3所示。

  图3:通过LabVIEW项目新建I/O服务器


  4。 在新建I/O服务器窗口中选择OPC客户端,点击继续。


  5。 仍已注册OPC服务器框中选择National Instruments。NIOPCServers,设置更新速率(ms)为100。这将创建LabVIEW与OPC标签的连接,每隔100 ms更新。

图4:OPC客户端 i/o服务器配置


  6. 选择确定。在您的项目浏览器窗口中自动创建了库,用于管理I/O服务器。

  7。 仍项目浏览器窗口中选择文件》保存所有,将项目保存为OPCDemoProject,将库保存为OPCDemoLibrary。


  创建通过I/O服务器连接到OPC标签的共享变量

  在本小节中,将创建绑定到OPC标签上的共享变量,仍而可以在LabVIEW中本地访问PLC数据。使用共享变量,您可以在一台计算机或是网络中,在多个LabVIEW应用程序间共享数据。


  创建绑定到PLC OPC标签上的新共享变量。

  在LabVIEW项目窗口中,右击我的电脑,选择新建》库。这样可以为共享变量建立一个新库,用于连接到PLC的OPC标签。


  右击新建的库,选择创建绑定变量……

  在创建绑定变量窗口中,选择OPC标签,通过浏览来自OPC服务器的仿真正弦数据,选择共享变量所需绑定的OPC标签,如图5所示。

  图5:选择需要绑定到共享变量的OPC标签


  4. 选择所有正弦项目,点击添加确定。这样就创建了绑定到PLC OPC标签上的共享变量,将它们载入到多变量编辑器中。


  5. 在多变量编辑器中,选择完成。这将把新的共享变量添加到前所建立的库中。

  说明:LabVIEW DSC模块通过为数据库直接添加记录数据、报警和事件的功能,在无需编写LabVIEW应用程序的情冴下,增强了共享变量。


  通过右击库,选择另存为,将新库以OPCItem.lvlib为文件名保存在项目浏览器窗口中。


  通过右击OPCItems库,选择部署,对共享变量部署。这样就可以収布共享变量,使它们可以在网络上通过其他计算机、OPC客户端和LabVIEW实时自动化控制器(PAC)使用。

  您现在可以通过共享变量在LabVIEW中本地访问PLC数据。


  使用分布式系统管理器查看共享变量

  在项目浏览器窗口中,选择工具》分布式系统管理器。这样可以打开您可以用来以多种方式管理共享变量的窗口(查看、部署、移除等等)。


  在变量管理器的树形面板中,展开位于我的系统分类下的localhost项目。右击OPCItems库,选择监视列表,显示被绑定到PLC OPC标签上的共享变量。


  共享变量将与仿真正弦数据同时更新。

  说明:分布式系统管理器是LabVIEW 8.6的新增功能。在LabVIEW的过去版本中,您可以在工具》共享变量》变量管理器中,将共享变量拖曳到监视变量窗口中。


  使用LabVIEW中的OPC标签数据

  在项目浏览器中,右击我的电脑,选择新建》VI。这样将创建新的虚拟仪器或VI。VI用于创建用户界面和可执行图形化代码。


  在默认情冴下,您可以看到前面板,这是VI的用户界面。LabVIEW有许多内建的UI组件,例如图形、图表、拨盘等等,您可以用来建立强大、直观的UI。选择视图》控件选板,或右击前面板的地方,打开控件选板。用鼠标查看在LabVIEW中提供的不同类别的UI组件。


  选择Express》图形》波形图表,仍控件选板中选择波形图表,将它放置在前面板上,如图6所示。

  图6:仍控件选板选择波形图表

  图7:放置在前面板上的波形图表


  在VI中,选择窗口》显示程序框图,或按Ctrl + E显示程序框图。程序框图用于极建程序行为。注意在程序框图上的图标,它们代表前面板上的图表。通过将数据传送到这个终端上,您可以将数据显示在前面板的图表中。


  在项目浏览器中,展开OPCItems库,选择Sine1共享变量。


  将Sine1共享变量仍项目浏览器拖曳到VI的程序框图中。共享变量作为程序框图中其他终端的数据源。


  选择视图》工具选板,或是按Shift + 右键显示工具选板,它包含了用于极建程序框图的多种工具。在默认情形下,您可以使用自动工具选择工具,它可以根据当前光标的位置选择合适的工具。


  选择如图8所示的连线工具。这个工具用于将程序框图上的终端用连线连接在一起。

  图8:选择连线工具


  通过单击Sine1共享变量,然后单击波形图表,使用连线工具将Sine1共享变量连接到波形图表上,如图9所示。


  图9:连接程序框图项目


  现在在VI运行的过程中,数据将会仍共享变量流入波形图表中。


  10. 仍工具选板选择自动工具选择工具。

  图10:工具选板中的自动工具选择


  11。 通过选择视图》函数选板或在程序框图上的位置右击,打开函数选板。函数选板包含了数百个分析函数、控制函数和用于图形化编程的结极。


  12。 通过浏览Express》执行过程控制》While循环,仍函数选板中选择while循环。在您选择了while循环后,鼠标如图12所示。这样您可以使用while循环包围一块代码。

  图11:选择While循环

  图12:While循环光标


  13。 使用while循环光标,通过单击拖曳光标,将while循环放置在包含共享变量和波形图表在内的区域上。

  图13:将While循环放置在共享变量和波形图表的周围


  While循环使其中的代码能够连续执行,直至用户或VI中的其他逻辑使停止。

  14. 定时循环是一种高级while循环,包含了其他配置选项用于定时和执行控制。通过右击while循环,选择用替换为定时循环,将while循环转换为定时循环。

  图14:将while循环转换为定时循环


  15。 要配置定时循环,双击定时循环的输入节点,如图15所示。

  图15:配置定时循环


  16. 在循环定时属性区域中,将周期设置为100 ms选择确定。这样可以将定时循环配置为每隔100 ms执行一次其中包含的代码。

  图16:将定时循环配置为每隔100 ms执行其中代码


  17。 通过选择窗口》显示前面板,或按Ctrl + E,返回到前面板中。

  18。 单击工具栏上的运行按钮执行VI。

  图17:运行按钮


  19. 在部署完成之后,单击部署……窗口中的关闭。在应用程序开始执行时,您可以看到Sine1波形被显示在波形图表上。

  图18:完成的前面板——在波形图表上显示PLC数据


  20. 祝贺您!您已经成功地在LabVIEW程序中访问了PLC数据,后就可以在您的解决方案中加入强大的分析和控制功能。


关键字:LabVIEW  OPC  PAC 编辑:什么鱼 引用地址:http://news.pyfle.com/Test_and_measurement/ic478738.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:基于STM32和以太网的远程电参数测量系统设计
下一篇:一种基于LabVIEW的无线自动测控系统设计

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

一种基于LabVIEW的多通道温度测量系统设计
  摘要:为了多种应用环境下的多点温度测量,设计一种基于LabVIEW的多通道温度测量系统。系统是基于LabVIEW图形化开发环境,利用RTD作为温度传感器,连续采集传感器信号,经过N19219四通道RTD输入模块进行信号调理,通过USB接入计算机,进行信号的连续采集测量,实时显示各通道信号并进行温度数据的分析处理。系统测试结果表明,测量系统的精度为0.01℃,有效测量范围为0~+300℃,验证其有效可行。  温度是工业生产和科学实验中常见的工艺参数之一,而且在许多工程项目中温度指标也是不可或缺的重要参数。例如碳化铁反应速率随操作时的变化而升降,反应过程中操作温度的高低不但影响反应完成所需的时间,还影响到转化率的大小。因此,准确
发表于 2019-10-29
一种基于LabVIEW的多通道温度测量系统设计
基于LabVIEW的继电器测试系统设计
吸合/释放电压的测试方案  系统利用LabVIEW软件程序控制研华功能板卡。通过研华功能板卡控制程控电压源,使它输出电压,此电压被送于被测继电器的线圈。逐步升高或降低输出电压,同时监测继电器的常开常闭触点状态,当产品的触点状志转换时,将此时程控电压源电压回读端口的电压值读出,即测得吸合/释放电压。  2.2 消耗电流/线圈电阻的测试方案  给继电器供电27伏时,利用霍尔电流传感器测量消耗电流,测量结果直接由研华功能板卡读出;测量线圈电阻时,先测量线圈电流,然后利用公式R=U/I即得线圈电阻值。  2.3 延时时间的测试方案  利用研华功能板卡上的计数器0输出一系列方波,通过软件读取方波信号的高低电平个数,同时在继电器状态转换时读取
发表于 2019-10-29
基于LabVIEW的继电器测试系统设计
基于STC89C52和LabVIEW的温湿度远程监控系统设计
码管进行实时显示。若设备舱的温湿度值超出地面操作人员所设定的范围,由核心控制模块发出指令启动温湿度调节系统实时调节设备舱的温湿度直至到所许可的范围之内。最后核心控制模块将所测量的设备舱温湿度值保存并发送至缓冲区,由通信模块将数据传递给地空链路再传输到地面指挥方舱。     2.2 地面监控软件设计  地面监控软件以LabVIEW为编程环境编写,监控计算机通过串口实时采集并以动态曲线的方式显示由地空链路下传的温湿度数据。一旦设备舱的温度或湿度值超出地面操作人员所设定的温湿度的范围时,监控软件中相应的报警灯会亮起,以提醒地面操作人员采取相应的措施,此时机载部分的温湿度调节系统在核心控制模块的控制下开始工作,自动调节设备舱内的温湿度直至
发表于 2019-10-29
基于STC89C52和LabVIEW的温湿度远程监控系统设计
基于LabVIEW和声卡的虚拟仪器设计与实现
  摘要:为了在对采样频率要求不高的情况下进行信号的生成和分析,采用声卡取代价格昂贵的数据采集卡进行采样和输出,利用虚拟仪器开发软件LabVIEW,分别设计和实现了基于声卡的虚拟信号发生器和虚拟示波器。信号发生器可以产生方波、三角波等常用波形和自定义波形,示波器具有波形显示、图像暂停和截取以及频谱分析功能,所设计的虚拟仪器具有友好的人机界面,只需两台计算机即可进行完整的自测试。  在电子与通信行业以及试验测试中,信号发生器和示波器是应用最广泛的电子测量仪器。传统仪器的技术和性能都已经比较成熟,但存在体积较大、不易携带、功能固定、并且价格昂贵等缺点。虚拟仪器是计算机技术与仪器技术深层次结合产生的产物,代表了当前测试仪器的发展方向
发表于 2019-10-29
基于LabVIEW和声卡的虚拟仪器设计与实现
平台加温控制器自动化测试系统
  摘要:本文在深入了解平台系统的基础上,设计了一套用于平台自动加温控制系统。系统硬件部分采用模块化设计方式,分别采用电阻测量、信号滤波、温度控制等模块,并结合平板电脑实现对平台系统的加温、测温。系统软件部分采用LabVIEW软件平台,充分利用LabVIEW特有的多线程软件架构,实现对平台系统的加温方式选择、测温数据记录、温度报警显示。系统研制完成后进行老练考核系统的稳定性、可靠性,并与标准仪器比对测试数据,比对结果表明,该系统具有测量误差小,测量数值稳定等特点。系统参与了平台系统不同环境下的试验,试验结果表明该系统具有便携、易维护的特点。  引言  三轴陀螺稳定平台(以下简称平台)的主要作用是在火箭内按制定的战术技术指标,建立
发表于 2019-10-29
平台加温控制器自动化测试系统
基于LabVIEW的数控机床网络测控系统——总体设计 (一)
和开放性,要保证测控系统的持续性、稳定性和安全性。与普通的Internet系统相比,测控信息网络的管理有其特殊性,具体有不同的配置管理和严格的安全管理。对于网络管理,其中基于TCP/IP的简单网络管理协议(SNMP)主要用于OSI七层模型中较低层的管理,具体采用轮询的监控方式。  本文将研究网络测控系统在数控机床位移定位精度和温度补偿中的应用,并设计出基Internet/Ethernet网络的B/S模式的数控机床远程测控系统。客户端可以在Internet上通过网络从测试仪器获取数据。同时客户端和下位测控机通信以及客户端与远程数据库的通信是本文的重点。客户端和下位测控机通信部分采用了LabVIEW软件系统中的DataSocket技术模块,它较容易
发表于 2019-10-28
基于LabVIEW的数控机床网络测控系统——总体设计 (一)
小广播
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD。com。cn, Inc。 All rights reserved
快乐飞艇如何玩才能盈利 PK10哪个平台赔率高 吉林快3开奖 快乐飞艇合法吗 玩快乐飞艇犯法吗 贵州快3 快乐赛车如何计算6码 快乐飞艇怎么买 快乐赛车代理怎么做的 快乐飞艇一天开多少期